Compositional Data Modeling through Dirichlet Innovations
نویسندگان
چکیده
The Dirichlet distribution is a well-known candidate in modeling compositional data sets. However, the presence of outliers, fails to model such sets, making other extensions necessary. In this paper, Kummer–Dirichlet and gamma are coupled, using beta-generating technique. This development results proposal distribution, which presents greater flexibility Some general properties, as probability density functions moments presented for new candidate. method maximum likelihood applied estimation parameters. usefulness demonstrated through application synthetic real where outliers present.
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Compositional Modeling for Data-Centric Business Applications
Data-centric business applications comprise an important class of distributed systems that includes on-line stores, document management systems, and patient portals. However, their complexity makes it difficult to design and implement them. We address these issues from a model-driven perspective by developing a formal, compositional, and domain-specific set of abstractions for the specification...
متن کاملMultiple linear regression modeling for compositional data
Compositional data, containing relative information, occur regularly inmany disciplines and practical situations. Multivariate statistics methods including regression analysis have been adopted to model compositional data, but the existing research is still scattered and fragmented. This paper contributes to modeling the linear regression relationship for compositional data as both dependent an...
متن کاملCompositional Adjustment of Dirichlet Mixture Priors
Dirichlet mixture priors provide a Bayesian formalism for scoring alignments of protein profiles to individual sequences, which can be generalized to constructing scores for multiple-alignment columns. A Dirichlet mixture is a probability distribution over multinomial space, each of whose components can be thought of as modeling a type of protein position. Applied to the simplest case of pairwi...
متن کاملCompositional Modeling of Wax Formation in Petroleum Mixtures
Heavy organics deposition is a common problem in oil industry, especially in oil production, transportation and processing. Wax or solid paraffin series are examples of heavy organics that deposit. Precipitation and crystallization of wax causes major difficulties in different processes. Based on multi-solid theory, a basic model is modified in this paper for wax precipitation in different oils...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9192477